miércoles, 11 de febrero de 2015

1.1 Modelos de Arquitectura de Computo

Tipos de Arquitecturas:

Básicamente existen tres tipos de arquitecturas;
  • Clásicas
  • Segmentadas 
  • De Multiprocesamiento
A continuación vamos a estudiar cada una de ellas...

Arquitecturas Clásicas

Estas arquitecturas se desarrollaron en las primeras computadoras electromecánicas y de tubos de vacío. Aun son usadas en procesadores empotrados de gama baja y son la base de la mayoría de las arquitecturas modernas.

Existen dos modelos que sobresalen en este tipo de arquitecturas:
  • Von Newman
  • Harvard
- Arquitectura Von Newman

Esta describe una arquitectura de diseño para un computador digital electrónico con partes que constan de una unidad de procesamiento que contiene una unidad aritmético lógica y registros del procesador, una unidad de control que contiene un registro de instrucciones y un contador de programa, una memoria para almacenar tanto datos como instrucciones, almacenamiento masivo externo, y mecanismos de entrada y salida.



Estos son algunos ejemplos de los modelos
de Von Newman.

También es conocida como Maunchly -  Ecker...
Esta arquitectura fue utilizada en la computadora ENIAC, Consiste en una unidad central de proceso que se comunica a través de un solo bus con un banco de memoria en donde se almacenan tanto los códigos de instrucción del programa, como los datos que serán procesados por este. Esta arquitectura es la más empleada en la actualidad ya, que es muy versátil.

Esta arquitectura se basa en dos conceptos básicos:
1) Utilizan sistemas binarios: Simplifica la electrónica y da mayor inmunidad al ruido.
2) Almacena la secuencia de programa en memoria: Da mayor velocidad para procesar información.



La principal desventaja de esta arquitectura, es que el bus de datos y direcciones único se convierte en un cuello de botella por el cual debe pasar toda la información que se lee de o se escribe a la memoria, obligando a que todos los accesos a esta sean secuenciales. Esto limita el grado de paralelismo (acciones que se pueden realizar al mismo tiempo) y por lo tanto, el desempeño de la computadora. Este efecto se conoce como el cuello de botella de Von Newman.

En esta figura se puede observar claramente 
la afirmación anterior, ya que tiene un único bus,
surge el famoso cuello de botella.



En esta arquitectura apareció por primera vez el concepto de programa almacenado.
Anteriormente la secuencia de las operaciones era dictada por el alambrado de la unidad de control, e cambiarla implicaba un proceso de recableado laborioso, lento(hasta tres semanas) y propenso a errores. En esta arquitectura se asigna un código numérico a cada instrucción. Dichos códigos se almacenan en la misma unidad de memoria que los datos que van a procesarse, para ser ejecutados en el orden en que se
encuentran almacenados en memoria.


Mas a detalle, el procesador se subdivide en una unidad de control (C.U.), una unidad lógica aritmética (A.L.U.) y una serie de registros. Los registros sirven para almacenar internamente datos y estado del procesador. La unidad aritmética lógica proporciona la capacidad de realizar operaciones aritméticas y lógicas. La unidad de control genera las señales de control para leer el código de las instrucciones, decodificarlas y hacer que la ALU las ejecute.

Y también se implemento una mejora en los buses ya que se subdividieron en tres categorías diferentes;

1) Bus de control: Líneas desde donde y hacia donde va dirigida la información y la secuencia de transferencia.

2) Bus de datos: Líneas por donde fluye información entre distintas partes de la computadora y es bidireccional.

3) Bus de direcciones: Líneas que permiten seleccionar la localidad de memoria y dirección a los puertos de E/S.


Aquí esta ejemplificado, como fueron re-definidos los buses
para solucionar el problema de saturación de datos.


A continuación les presentamos un vídeo donde se describen mas a fondo los componentes principales de esta arquitectura...



- Arquitectura Harvard


Esta arquitectura surgió en la universidad del mismo nombre, poco después de que la arquitectura Von Newman apareciera en la universidad de Princeton. Al igual que en la arquitectura Von Newman, el programa se almacena como un código numérico en la memoria, pero no en el mismo espacio de memoria ni en el mismo formato que los datos. Por ejemplo, se pueden almacenar las instrucciones en doce bits en la memoria de programa, mientras los datos de almacenan en 8 bits en una memoria aparte.


Este es el diagrama de bloques de la 
Arquitectura Harvard.



El hecho de tener un bus separado para el programa y otro para los datos permite que se lea el código de operación de una instrucción, al mismo tiempo se lee de la memoria de datos los operados de la instrucción previa. Así se evita el problema del cuello de botella de Von Newman y se obtiene un mejor desempeño. 

En la actualidad la mayoría de los procesadores modernos se conectan al exterior de manera similar a a la arquitectura Von Newman, con un banco de memoria masivo único, pero internamente incluyen varios niveles de memoria cache con bancos separados en cache de programa y cache de datos, buscando un mejor desempeño sin perder la versatilidad.

Arquitecturas Segmentadas


Las arquitecturas segmentadas o con segmentación del cauce buscan mejorar el desempeño realizando paralelamente varias etapas del ciclo de instrucción al mismo tiempo.


El procesador se divide en varias unidades funcionales independientes y se dividen entre ellas el procesamiento de las instrucciones. Para comprender mejor esto, supongamos que un procesador simple tiene un ciclo de instrucción sencillo consistente solamente en una etapa de búsqueda del código de instrucción y en otra etapa de ejecución de la instrucción. En un procesador sin segmentación del cauce, las dos etapas se realizarían de manera secuencial para cada una de la instrucciones.
Búsqueda y ejecución en secuencia de tres instrucciones en un
procesador sin segmentación del cause.

En un procesador con segmentación del cause, cada una de estas etapas se asigna a una unidad funcional diferente, la búsqueda a la unidad de búsqueda y la ejecución a la unidad de ejecución. Estas unidades pueden trabajar en forma paralela en instrucciones diferentes. Estas unidades se comunican por medio de una cola de instrucciones en la que la unidad de búsqueda coloca los códigos de instrucción que leyó para que la unidad de ejecución los tome de la cola y los ejecute. Esta cola se parece a un tubo donde las instrucciones entran por un extremo y salen por el otro. De esta analogía proviene el nombre en ingles: Pipelining o entubamiento.




Comunicación entre las unidades en un procesador 
con segmentación de cauce.



Completando el ejemplo anterior, en un procesador con segmentación, la unidad de búsqueda comenzaría buscando el código de la primera instrucción en el primer ciclo de reloj. Durante el segundo ciclo de reloj, la unidad de búsqueda obtendría el código de la instrucción 2, mientras que la unidad de ejecución ejecuta la instrucción 1 y así sucesivamente.

Búsqueda y ejecución en secuencia de tres instrucciones en un
procesador con segmentación del cause.

En este esquema sigue tomando el mismo numero de ciclos de reloj (el mismo tiempo), pero como se trabaja en varias instrucciones al mismo tiempo, el número promedio de instrucciones por segundo se multiplica. La mejora en el rendimiento no es proporcional al numero de segmentos en el cauce debido a que cada etapa no toma el mismo tiempo en realizarse, además de que se puede presentar competencia por el uso de algunos recursos como la memoria principal. Otra razón por la que las ventajas de este esquema se pierden es cuando se encuentra un salto en el programa y todas las instrucciones que ya se buscaron y se encuentran en la cola, deben descartarse y comenzar a buscar las instrucciones desde cero a partir de la dirección a la que se salto. Esto reduce el desempeño del procesador y aún se investigan maneras de predecir los saltos para evitar este problema.

Consecuencias de la competencia por un recurso.


Arquitecturas De Multiprocesamiento

Cuando se desea incrementar el desempeño más aya de lo que permite la técnica de segmentación del cauce (limite teórico de una instrucción por ciclo de reloj), se requiere utilizar más de un procesador para la ejecución del programa de aplicación.


Las CPU de multiprocesamiento se clasifican de la siguiente manera:
● SISO – (Single Instruction, Single Operand ) computadoras independientes
● SIMO – (Single Instruction, Multiple Operand ) procesadores vectoriales
● MISO – (Multiple Instruction, Single Operand ) No implementado

● MIMO – (Multiple Instruction, Multiple Operand ) sistemas SMP, Clusters

Procesadores vectoriales – Son computadoras pensadas para aplicar un mismo algoritmo numérico a una serie de datos matriciales, en especial en la simulación de sistemas físicos complejos.

En los sistemas SMP (Simetric Multiprocesesors), varios procesadores comparten la misma memoria principal y periféricos de I/O, Normalmente conectados por un bus común. Se conocen como simétricos, ya que ningún procesador toma el papel de maestro y los demás de esclavos, sino que todos tienen derechos similares en cuanto al acceso a la memoria y periféricos y ambos son administrados por el sistema operativo.

Los Clusters son conjuntos de computadoras independientes conectadas en una red de área local o por un bis de interconexión y que trabajan cooperativamente para resolver un problema. Es clave en su funcionamiento contar con un sistema operativo y programas de aplicación capaces de distribuir el trabajo entre las computadoras de la red.

Aquí hay un breve vídeo donde también se explica la arquitectura multiprocesamiento, para complementar la información anterior.



Referencias:
* Material proporcionado en clase de Arquitectura de Computadoras por el Ing. Eric León Olivares, ISC en el Instituto Tecnológico de Pachuca.


Share This :

2 comentarios :